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The shape and stability of liquid menisci attached to a solid edge with dihedral angle 
2a is investigated. It is shown that in addition to the family of cylindrical menisci a 
family of azimuthally modified unduloids exists. A double Fourier series of the latter 
with respect to their axis (parallel to the extension of the edge) and with respect to 
the azimuth is derived. The dispersion relation between the axial wavenumber q, the 
azimuthal wavenumber s and the waviness parameter d is calculated. When the 
condition of constant contact angle y along the contact lines with the solid is applied, 
a one-dimensional family of modified unduloids fitting to the edge is obtained. Their 
axial wavenumber q becomes independent of the waviness d at the bifurcation with 
the family of cylindrical menisci, such that this bifurcation limits the stability. The 
respective stability criteria are derived and evaluated. For a + y > the cylindrical 
menisci are convex. They reveal a maximum stable length, which quadratically 
tends to infinity when a + y = in is approached. The smallest stable extension arises 
for the free cylindrical column (the Rayleigh jet), which is covered by the present 
investigations by assuming a = A, y = in. For a+y < ;A the cylindrical menisci are 
concave and stable : no bifurcation with the family of modified unduloids arises. 

1. Introduction 
The behaviour of liquid menisci at very low Bond numbers is receiving increasing 

attention owing to the possibilities of living and performing scientific research in the 
microgravity environment of space. The design of spacecraft tanks must ensure fuel 
outflow on demand. With the fuel no longer resting on the bottom and pistons not 
safely preventing bubble intrusion after several months in orbit, so-called surface- 
tension tanks are the obvious alternative. The surface energy of a liquid generally 
decreases when the liquid moves to concave regions of a container, i.e. in particular 
to corners and edges. Various surface-tension tanks based on longitudinal sections of 
circular cylinders and on rhombic cylinders have been tested, exploiting the short- 
time microgravity environment provided by parabolic fights of a KC- 135 aircraft 
(Bauer 1986~;  Langbein & Hornung 1989). Other designs foreseen for longer 
duration fights are being developed (So0 1984). 

During materials processing under microgravity conditions, the wetting of the 
crucible by the liquids or melts used is of primary importance as well. Changes in the 
contact angle may bring about significant changes in the liquid configuration. There 
have been several attempts to produce finely dispersed mixtures of monotectic alloys 
under microgravity conditions. When a melt of such an alloy is cooled down into the 
miscibility gap, separation of the melts is likely to start in crucible corners and edges. 
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First, cooling generally has easy access to the corners and edges. Secondly, the free 
energy of nucleation of a melt exhibiting a small contact angle is generally 
diminished in corners and edges. This applies in particular if, close to the critical 
point (consolutal point), there is complete wetting (Cahn 1977,1979), i.e. if one of the 
consolutal melts wets the crucible so much better than the other melt that Young's 
condition between the interfacial tensions and the contact angle has no solution and 
the former melt spreads along the crucible anyway. However, with ongoing cooling 
and separation the contact angle and hence the liquid configuration may radically 
change. 

It was proven by Lord Rayleigh in the last century (1879, 1945) that a free liquid 
jet breaks if its length L exceeds its circumference 2nR. This stability criterion also 
applies to a cylindrical liquid column supported by coaxial circular disks. When 
lengthened to L 2 2zB, one half of the column widens, whereas the other half shrinks 
accordingly. This instability is known as amphora-mode instability. It has been 
verified by using density matched liquids (Plateau simulation) and also by applying 
microgravity conditions. When the liquid column is rotating with circular frequency 
w ,  the maximum stable length is reduced to L = 2nR( 1 + p ~ ~ R ~ / ( r ) - ' . ~ ,  where p is the 
density and CT the surface tension of the liquid considered. During the Skylab mission 
another instability of rotating liquid columns has been observed: the column may 
rotate around the axis like a skipping rope (Carruthers et al. 1975). This skipping- 
rope instability arises if L 2 ~ R ( ~ w ~ R ~ / c T ) - ~ . ~ .  During the Spacelab-D1 mission, the 
bifurcation in the breaking of rotating columns following the amphora-mode and the 
skipping-rope instabilities has been studied (Martinez 1987). In the five breakages 
performed, each time the amphora-mode instability won the race against the 
skipping-rope instability. The stability limits considered also hold for two liquids 
columns, each of one-half of the relevant length, if they are connected by a tube 
providing pressure and volume balance (Boys 1959). 

The stability limits of liquid configurations may be conveniently calculated from 
the minimum volume condition. If a family of solutions of the capillary equation (or 
Gauss-Laplace equation) comprises two neighbouring solutions with equal liquid 
volume, but differing pressure, the liquid surface may be deformed without requiring 
energy, i.e. an unstable situation has been reached. In  order to elucidate this 
principle, note that the capillary equation is the Lagrange equation resulting from 
minimizing the liquid energy under the constraint of constant liquid volume. The 
pressure is the respective Lagrange multiplier. This formalism, however, makes use 
of an extremum of the energy only: a solution of the capillary equation found may 
represent a saddle point rather than a minimum of the liquid energy. One has to 
make sure that there is not any infinitesimal deformation of the liquid surface leading 
to an even lower energy. This may be achieved by transforming the quadratic form 
of the liquid energy to main axes. If any of the respective eigenvalues is zero or even 
negative, an unstable surface has been found. A zero eigenvalue arises if two 
neighbouring solutions of the capillary equation exhibiting equal liquid volume are 
found. In that case there is no longer a force restoring the initial surface shape. The 
third variation of the liquid energy with respect to the surface deformation 
determines to which side the liquid surface is going to move. This gives rise to the 
minimum volume condition, which correctly should be called the extremum volume 
condition. 

Numerous analytical and numerical stability diagrams valid for liquid columns 
between coaxial circular disks have been reported in terms of Bond number, circular 
frequency of rotation and ratio of the disk diameters (Heywang 1956 ; Corriell, Hardy 
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& Cordes 1977; Martinez 1983; Meseguer 1983; Langbein & Rischbieter 1984; 
Martinez, Haynes & Langbein 1987). Experimental observation of these stability 
limits has proven a sensitive method for measuring Bond numbers and surface 
tensions (Padday 1983 ; Langbein 1987). These investigations have been strongly 
stimulated by the fact that  liquid columns represent a convenient geometry for 
measurements and calculations of resonance frequencies and Marangoni convection 
(Bauer 1984, 1986b; Schwabe & Scharmann 1979; Preisser, Schwabe & Scharmann 
1983), and by the applicability of the results to the molten zones created during 
crystal growth with a free fluid surface according to the Czochralski or the travelling 
heater method. 

2. Wetting of edges 
Up to now little attention has been given to  the stability of liquid volumes 

attached to  solid edges. By a solid edge we mean wedges (with dihedral angle 2a < 
n) and edges in their more common sense (with dihedral angle 2a > K), see figure 1. 
The edge with dihedral angle 2a = K is just a straight line on a plane. 

At such edges a family of cylindrical surfaces exists. It has been shown by Concus 
and Finn that these cylindrical surfaces represent the state with minimum energy, 
if the sum of half the dihedral angle a and the contact angle y is smaller than a right 
angle (Concus & Finn 1974; Finn 1986), 

a+y <in. (1) 

Equation (1) implies that the meniscus is concave, such that a capillary underpressure 
favouring penetration of the liquid into the wedge arises. On the ground and even 
more so under reduced gravity (at low Bond numbers), the liquid meniscus in such 
a wedge assumes a hyperbolic profile. 

On the other hand, it is hard to believe that the cylindrical surface shown in figure 
2 might be stable. Experience tells us that it will break into drops. Whenever the sum 
of half the dihedral angle a and the contact angle y exceeds a right angle, 

a+y >in, (2) 
a convex meniscus causing capillary overpressure arises. A liquid column produced 
a t  such an edge may loose energy by breaking into droplets, if the edge is sufficiently 
long. Stability criteria similar to those valid for free columns may be expected. In  the 
following we calculate the dependence of these stability limits on the dihedral angle 
2a, the contact angle y and the liquid volume. The calculations include free liquid 
columns via the dihedral angle 201 = 2~ and the contact angle y = in. 

Breakage of the cylindrical surfaces shown in figures 1 and 2 will start, if there is 
an infinitesimal periodic deformation of the surface, which does not require energy. 
The stability limit L = 2nR of the free cylindrical surfaces is conveniently obtained 
by embedding them into the family of unduloids. The cylinders in this context are 
unduloids with equal minimum and maximum radii. The bifurcation of both families 
of solutions gives the stability criterion. 

I n  the following we proceed in similar manner. As a first step, we identify a family 
of azimuthally modified unduloids. The family of regular unduloids does not contain 
solutions which would fit to a solid edge with constant contact angle y along the 
contact line (except if the contact angle equals in). This requirement, rather, brings 
about non-axisymmetric deformations of the liquid surface. Therefore, in 333 and 4 
we construct a family of such non-axisymmetric solutions of the capillary equation. 
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FIGURE 1. Concave and convex liquid menisci for a+y 5 in, corresponding to negative and 
positive fluidstatic pressure, at a solid edge. 

FIQURE 2. The breakup of a cylindrical column with contact angle y = in on a plane (in an 
edge with dihedral angle 2a = x ) .  

We consider small deviations d from the cylindrical shape and expand the liquid 
surface into a Fourier series with wavenumber q in the axial direction. We find the 
coefficients of this expansion to become Fourier series with wavenumber s in the 
azimuthal direction, such that a double Fourier expansion in the axial and azimuthal 
directions arises. The wavenumber s in the azimuthal direction may become 
imaginary, in which case a representation by hyperbolic cosines rather than by 
circular cosines results. The liquid surfaces obtained start off a t  zero azimuth like 
unduloids, but exhibit an azimuthal deformation increasing from 9) = 0 to 9) = +n, 
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where they intersect themselves. They therefore may come into existence only if they 
contact a third medium. 

The position of the z-axis of the azimuthally deformed surfaces under construction 
need not be fixed before their adaptation to a solid edge. This is done in $ 5  by 
requiring that it coincides with the axis of the cylindrical solutions exhibiting the 
same liquid volume per length. Any other choice of the axis would considerably 
impede the calculation of the bifurcation of the surfaces considered with the 
cylindrical surfaces. Subsequently, the equation for the contact line with the solid 
edge is derived and constancy of the contact angle is required. This condition relates 
the wavenumber of the surfaces considered to the contact angle y and the dihedral 
angle 2a of the edge. 

The liquid volume per length is calculated in $6. It turns out not to depend on the 
azimuthal deformation to first order of the waveness parameter d ,  if the liquid 
column considered has infinite length or extends over an integer number of 
wavelengths L = 2x/p. In  these cases the minimum volume condition is fulfilled : the 
shape of the liquid surface may be deformed without the need for external energy, 
i.e. a stability limit is reached. Among these stability limits, that corresponding to 
a single wavelength is the really important one. If the column is longer, it is unstable 
anyway. The respective stability criteria are discussed in detail in $7.  

3. Axially periodic meniscus shapes 
Using cylinder coordinates r ,  q, z, the surface area of a liquid meniscus is 

A = ~ d z ~ r d q [ l + ( $ - I + ( ~ ~ ] ,  

n n  
and the liquid volume equals 

V =  dz r d q k  J J  

(3) 

(4) 

Minimizing the surface energy UA of the liquid under the constraint of constant liquid 
volume V yields the Gauss-Laplace equation (capillary equation) 

where u is the surface tension, p the fluidstatic pressure difference across the liquid 
surface. Being interested in small deviations from the cylindrical shape, we restrict 
ourselves up to $8 to terms bilinear in a r / r @ ,  ar/az,  etc. Equation ( 5 )  thus reduces 
to 

The breakage of infinite liquid columns, whether free or attached to a solid edge, is 
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axially periodic. The deformation therefore can be expanded into a Fourier series 
with axial wavenumber q : 

f rn  

r(v, zl = c Tk(p?) exp (ikq4. (7)  
k--m 

Owing to the structure of (5)  and (6), rlc(p?) is found to exhibit the order k in the 
deviation from the cylindrical shape. In  zero order, k = 0, we obtain 

To(p7) = u/p = 1. (8) 
Equating the length cr/p to 1 means normalizing all other lengths to v/p, too. 

The first-order terms k = & 1 in (7) yield 

Equation (9) is solved as 
Tfl(V) = d*,cos (v), 

where q2+s2 = 1.  (11) 

In (10) the sine term has been omitted, since we are interested in even functions of 
v only. Odd functions do not fit the edges considered. I n  order for the deviation from 
the cylindrical shape to be real and small we require 

4. Second-order contributions 
By substituting (8) and (10) into (6) and Fourier decomposition with respect to z ,  

we obtain for the terms of order k = & 2  in the deviation from the cylindrical shape 

(1  -4q2) r fz(v)  +$'[3(1 -2q2) cos ( 2 ~ ~ 7 )  + (1  -4p2)]. a2r+2(v) - 
+z (14) and 

The terms cos(2v)  in the aximuthal direction arise from products of first-order 
terms. The inhomogeneous solutions of (13) and (14) are given by 

(15) 

(16) 

The homogeneous solutions of (13) and (14) are not further considered here, since 
they represent (i) a displacement of the column normal to its axis, which is fixed only 
in the next Section; (ii) an axial deformation of the column with wavenumber 29 
which, if this is the leading deformation, is included in the present investigations by 
replacing 2q by q.  

--_ 

- 1 = &P[cos ( 2 q )  + (1 - 2s2)], 

Tk2(p7)  = -$P[(1-2s2)cos (2spl)+ 11. 

Gathering up (7), (8), (lo), (15) and (16) we obtain 

r ( 9 ,  2) = 1 + 2d cos (q) cos (qz)  
+ s2{ - cos ( 2 q ~ )  [(I - 2s') cos ( 2 ~ )  + 11 + [COS ( 2 ~ )  + ( 1 - 2a2)]). (17) 
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By repeated substitution of the lower-order terms into ( 5 )  and evaluation of all 
products and square roots one obtains for r (p,z)  the double Fourier series 

m ik ik 

k-0 C-0 m-0 
r (q , z )  = C C. C ( k , 1 , m ) d k c o s [ ( k : - 2 1 ) ~ ] c o s [ ( k - 2 m ) p z ] .  (18) 

This series will be further discussed in $9. 

5. Liquid menisci at solid edges 
I n  order for a liquid meniscus to fit to a solid edge, the contact angle y must be 

constant along the contact line. Let the distance of the z-axis from the planes forming 
the solid edge be h, see figure 3. Then, for the contact line we obtain the condition 

(19) 

q ( z )  = a+y-$ (20) 

~ ( z )  = a + y - ~ x - 2 d t a n ( y - ~ n ) c o s [ s ( a + y - ~ ) ] c o s ( q z ) .  (21) 

ns = (-sin(v-a), -cos(p,-a),O). (22) 

rsin (q-a)  = h = sin (y- in) .  

Substituting (17) into (19) and using 

at  zero order, we find to first order of the waviness parameter d 

The normal vector on the planes forming the solid edge equals 

The normal vector on the liquid meniscus is given by 

Hence, for the cosine of the contact angle we obtain 

ar 
-sin (97 -a) + cos (v - a) - 

r r b  

Substituting (21) for the contact line we are left with 

tan(y-ix) = stan[s(a+y-ix)]+O[d2]. (25) 

A liquid meniscus with constant contact angle y along the contact line exists if (25) 
is satisfied. The second-order contributions to  the meniscus shape according to (17) 
do not contribute to this condition. The third-order contributions considered in $9 
cause terms of order d 2 .  The azimuthal wavenumber s is limited by s2 < 1. It becomes 
imaginary for large axial wavenumbers q, such that the tangent in (25) becomes the 
hyperbolic tangent. 

The condition of constant contact angle is part of the minimization of the liquid 
energy. It expresses the static equilibrium of forces acting a t  the contact line, i.e. of 
the three surface tensions involved. Experience, on the other hand, tells us that the 
contact angle changes significantly when a contact line is moving. An advancing 
contact angle generally is much larger than a receding contact angle, since the 
process of wetting requires additional energy against the viscous friction, 

The dependency of the contact angle on the motion of the contact line, however, 
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FIGIJRE 3. Sketch of the calculation of the contact line and the contact angle. 

is irrelevant to the present investigations. The stability criteria used are static 
criteria. They result from minimizing the liquid energy. A variation of the contact 
angle during the process of breaking does not affect the stability limit. 

It has been repeatedly quoted that it is also possible for the contact angle to show 
static hysteresis, i.e. that  it may adopt different stable values along a stationary 
contact line. This non-moving of the contact line is explicitly excluded in the present 
investigations. It generally tends to extend the range of stability of liquid surfaces. 

6. Constancy of the liquid volume 

volume exist. From figure 3 we find 
A stability limit arises if two neighbouring liquid surfaces enclosing the same liquid 

Ti = Sd.( rz) dcp r2 + h[r cos (cp(z) - a) + h cot a] . I 
~ ( z )  is the azimuth along the contact line as given by (21). The integration over cp in 
(26) yields, inclusive of terms of second order k = + 2  in the waviness parameter d,  

I sin [2s(a + y - in)] 
2s 

+ 2d2( 1 -2) [(a +y-$n) + 
+4d2[stan [s(a+y-~n)]-tan(y-$n)]cos2[s(a+y-$n)]cos2 ( q z ) }  (27) 

where 
sin ( y  -in) 

sin a 
n = (a+y-$n)+ sin(a+y-$n) 

is the cross-section of the cylindrical liquid volume fitting to the edge under 
considera tion. 

The terms of first order in the waviness d do not change the liquid volume if the 
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column has infinite length or extends over an integer number of wavelengths L = 
2x/q. In  that case we are left with 

+2d2[stan [s (a+ y-$~)]-tan (y- in)]  cos' [s(a+y-$r)] . (29) / 
For the liquid volume not to change also to second order of the waviness d ,  the main 
radius ro has to be adapted accordingly, e.g. (8) has to be replaced by 

1 sin [&(a + y - in)] 
2s 

ro = 1 - d 2 P 1  
~ 

+ [s tan [s(a + y -&)] - tan ( y - in)] cos' [s(a + y - i~)]}. (30) 

Taking into account (25 )  for constancy of the contact angle, we find the main radius 
ro generally to decrease and equivalently the pressure p to rise with increasing 
waviness d.  

When the wetting case a+ y < Bx is considered, ro and p apply to the exterior of 
the liquid attached to the edge. In  that case we have from (30) that ro increases and 
p falls with increasing waviness d,  which again means that the capillary pressure 
within the liquid attached to the edge rises, 

7. The stability criterion 
The family of liquid menisci, which fit to  a solid edge with dihedral angle 2a, is 

defined by the double Fourier series (18), the dispersion relation (11) and the 
condition (25) on constancy of the contact angle. Equations (11) and (25) give two 
relationships between the waviness d ,  the axial wavenumber q and the azimuthal 
wavenumber s. One of these parameters can be chosen independently, i.e. a one- 
dimensional family of azimuthally modified unduloids fitting to the solid edge 
results. The structure of (11) and (25) suggests the use of the waviness d as the 
independent parameter. 

The family of liquid menisci under consideration becomes unstable according to 
the minimum volume condition if two solutions resulting from each other by an 
infinitesimal deformation exhibit equal liquid volume. Since deformations involving 
a change in wavelength are by no means infinitesimal, the minimum volume 
condition is satisfied for zero waviness d at the bifurcation with the family of 
cylindrical menisci only. Equation (25) ford = 0 thus becomes the stability criterion. 

When the liquid volume per length is normalized to the volume x of a free 

(31) 
cylindrical column with radius 1, n= x, 
figure 4 for the wavelength L/2x = q-' of breakage versus a+ y - i x  results. The 
parameter for the different curves is a. The smallest stable length, L/2x = 1, is for 
the case of the free cylindrical column, into which a half-plane has been introduced 
up to the axis. This case is covered in the present investigations by assuming a = n, 
y = in. It is indicated in figure 4 by a star. 

From figure 4 it is obvious that there is a lower limit for the stable length 
depending on a + y - in only : 

L/2x > [ x / ( a + y - i x ) ] %  (32) 

This is further stressed in figure 5 ,  where the squared wavenumber qz has been 
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L/2n 

FIGURE 4. The wavelength L/2x of breakage of liquid columns with cross-section I7 = x at a solid 
edge versus a + y - i x .  The parameter for the different curves is half the dihedral angle a of the edge. 

0.8n 

0.6n 

a+y-$n 

0.2n 

0 0.2 0.4 0.6 0.8 1 .o 
4= 

FIGURE 5.  The squared wavenumber q2 of breakage of liquid columns with normalized cross- 
section 17 = II at a solid edge versus a+ y-$ The parameter for the different curves is half the 
dihedral angle a of the edge. 

plotted versus a+ y-$  (once again assuming the liquid volume per length to equal 
R). 

For a+y-@ < 0, (25) has no solution, i.e. there is no bifurcation between the 
families of cylinders and modified unduloids. Concave cylindrical surfaces are always 
stable. This is the wetting situation described by (1). 
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8. The surface energy 

the contact area A ,  with the solid edge. For the effective surface area 
The total surface of the liquid volume is made up by the free liquid surface A, and 

A ,  = A ,  - cos yA,  
we obtain 

(33) 

A ,  = 2 p z  { dv[ r2 + (8T + ( r E y ] +  sin (y- in)  [T cos ( ~ ( z )  -a) + h cot a] . I 
(34) 

Integration over qj in (34) yields 

sin [s(a+y-$n)] 
cos ( a 4  s 

] sin2 (qzl}. (35) 
sin [ 2 s ( a + y - 3 ~ ) ]  

2s 
+ 2d2( 1 - 8 2 )  [(a + y - i x )  + 

By integration over z over an integer number of wavelengths the first-order 
contribution to the effective surface area vanishes (as does the respective contribution 
to theliquid volume). In the second-order contribution sin2qz is replaced by i. We 
thus are left with 

sin [&(a + y - in)] 
2s 

Substituting (30) for constancy of the liquid volume we eventually find 

A ,  = 2L{Z7-d2[stan[s(a+y-~n)]-tan ( ~ - ~ n ) ] c o s * [ s ( a + y - ~ n ) ] ) .  (37) 

The effective surface area is not changed to second order of the waviness d ,  if 
condition (25) for the constancy of the contact angle along the contact line is 
satisfied. This confirms that (25) for d = 0 is the stability condition. 

Going beyond this necessary condition, we may conclude from (37) that the total 
surface energy of the cylindrical surfaces is diminished by any deformation, the 
axial wavenumber of which exceeds that given by the stability criterion (25), even 
if the deformation does not satisfy the condition of constant contact angle. 
Deformations with wavelengths longer and shorter than that corresponding to (25) 
are stable and unstable, respectively. 

9. Higher order contributions 
For calculating the stability criterion from the minimum volume condition it is 

sufficient to consider terms up to order k = 2 in the waviness parameter d .  To find 
the direction in which the respective deformation is going to become unstable, it is 
necessary to consider the terms of order k = 3. The terms of higher order are required 
to check convergence of the series expansion (18) and to enable reasonable first 
guesses for numerical calculations of surface shapes in more complicated con- 
figurations. 

All terms up to order k = 10 in the deformation parameter d have been calculated 
by means of a computer program. It is based on subprograms, which from the 
coefficients C ( k ,  1, m) of threefold power and Fourier series like expression (18) 
calculate the coefficients C(k, 1, m) of products, quotients and square roots of such 
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threefold series. The calculation of the derivatives with respect to p) and z is 
straightforward anyway. By substitution of expression (18) into the capillary 
equation (5) and gathering up all terms of order k = 3 ,  the computer program (and 
likewise a careful control by hand) yields 

d3-terms in (17) = [(9q2 +9s2- 1) C ( 3 , 0 , 0 )  - (1  -s2) (1 -7s2)] cos ( 3 q )  cos (3qz) 
+ [ ( q 2 + 9 s 2 - l ) C ( 3 , 0 ,  l ) - ( l -s2)  ( l - 3 s 2 ) ] c o s ( 3 ~ ) c o s ( q z )  
+ [(9q2 +s2- 1 )  C(3,  1 ,  0) -3(  1 -s')'] cos (q) cos ( 3 p )  

+ [(q' + 8' - 1) C ( 3 , 1 , 1 )  - 3( 1 - s')'] cos (q) cos (9.2). (38) 

C ( 3 , 0 , 0 )  =i( l -82)(1-782) ,  , (39) 

Taking into account disperion relation (1 1) one obtains 

(1-8') ( 1 - 3 2 )  
8s' 

C ( 3 , 0 , 1 )  = > 140) 

C ( 3 , 1 , 0 )  = i(1-2). (41)  

The fourth term in (38)  is identical to the first-order contribution to r(p), x )  according 
to (10) and (17). This term cannot be balanced by an appropriate choice of C(3,1,  l),  
but rather gives the d2-contribution to the dispersion relation ( l l ) ,  which now reads 

q2+s2 = 1 +32(1-s2)2+0(d4). (42)  

The technique of the computer-aided successive satisfication of the capillary 
equation (5) is to balance by C(k,  1, m) all terms of order k in the waviness parameter 
d, which are caused by lower-order terms n < k in the expansion of r(p) ,z) .  This 
balancing does not work for the first-order contribution cos (q) cos (qz),  since the 
respective coefficient C(2k + 1, k ,  k) contains the vanishing factor q2 + s2 - 1. Each 
time the function cos (q) cos (qz) is reobtained, i.e. at each odd order dZk+l of the 
waviness parameter d, another contribution to the dispersion relation arises. The 
corresponding coefficients C(2k + 1, k, k) may be chosen arbitrarily, they just 
regenerate the first-order solution. 

It turns out convenient to require 

ik  ik  

2 C(k,  1,m) = 0. (43)  
1-0 m-0 

Requiring (43)  for k > 1, odd, means that this equation also holds for k > 2 ,  even, i.e. 
that all higher-order contributions to the Fourier series (18) vanish for s = 0, qz = 
0,2x and for s = 0, qz = K .  Hence, 4d equals the maximum meniscus deformation 
along the symmetry plane 9, = 0. From (43)  we obtain 

(1-s') (1+s2-7s4) 
C(3,1,1)  = - 

8s2 (44)  

Substitution of the third-order contributions into (19)  for the contact line and (25) 
for constancy of the contact angle yields the improved condition 

(1 - s2)3 
tan ( y - i x )  = stan[s(a+y-$)]+d'- sin [2s(a+y-$z)]+O(d4) (45)  

between the azimuthal wavenumber s and the waviness d. The contributions of the 

4s 
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terms C(3,1,0) and C(3,1,1) to (45)  vanish identically, i.e. (45) is not affected by the 
choice of C(3,1,1) according to (43). 

Continuing with the solution of the capillary equation ( 5 )  to higher orders in the 
waviness parameter d one learns that the sensitive contributions are the terms 
C(2k+ 1,1, k )  cos [(2k + 1 -21) 91 cos (42). During successive balancing of the inhomo- 
geneous contributions, these terms regularly carry the factor (2k-  21) (2k-  21 + 2 )  s2, 
compare (38). Hence, in the double Fourier series (18) another denominator 3 arises 
at each odd order of k. The expansion with respect to the waviness d is actually an 
expansion with respect to d21s2. For the Fourier series to converge 

I4 Q I4 (46) 
has to be required. 

represented by finite power series in s2, i.e. 
The coefficients C(k,E,m) arising in the threefold series (18) actually may be 

k-1 

C(k, I ,  m) = x D(k,  1 ,  m, n) P. 
n--$(k-1) 

(47)  

The higher-order contributions to the dispersion relation ( l l ) ,  (42)  become power 
series in s2 also, 

co k-1 
q 2 =  (1-2) & ( k , n ) [ d 2 ( 1 - ~ 2 ) ] k ~ 2 n  

Ice0 n--(k-1) 

The computer program described has been used for calculating the rational 
representation of all coefficients D ( k ,  1 ,  m, n) in (47)  up to order k = 10 and that of all 
coefficients &(k, n) in (48) up to order k = 6. They are filed in tables held in the 
Journal of Fluid Mechanics office and are obtainable from there on request. The 
numerical precision turned out not sufficient to obtain the rational form of the terms 
k > 10 as well. A further modification of the program based on the calculation of the 
coefficients D ( k ,  1 ,  m, n) rather than on C(k,  I ,  m) would be necessary. 

10. Conclusions 
A liquid will spread along a solid edge under microgravity conditions if the sum of 

the contact angle y and half the dihedral angle u is smaller than a right angle. In the 
opposite case, if the sum considered is larger than a right angle, a liquid volume 
initially pressed into the edge (e.g. by rotation) will be either sucked out or else will 
break, if the edge is sufficiently long. This principle can be efficiently used for 
measuring contact angles under microgravity conditions : take a series of wedges 
from the same solid material with differing dihedral angles 2u and observe which 
wedges are wetted by a given liquid and which are not. The precision of this method 
is limited by time only. When the limit u+ = in is approached from either side, 
wetting becomes very slow and the wavelength and time of breakage become very 
large. 

This method can be applied not only to transparent liquids in transparent 
containers but also to metallic melts in high temperature crucibles. The wetting 
situation reached in a microgravity environment may be quenched and eventually 
inspected on ground. Recently, this method has been tested with transparent liquids 
during the short-time microgravity provided during the parabolic fight of an aircraft. 
An accuracy in the contact angle of water, glycerine and Fluorinert on glass and 
Plexiglas of a few degrees has been obtained (Langbein, Grossbach & Heide 1989). 
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Longer time microgravity experiments, to be performed in sounding rockets which 
provide about six minutes of microgravity are being planned. 

A most interesting situation arises if a container is filled with two liquids with 
contact angles y1 = y ,  yz = R - y ,  neither of which satisfies the wetting condition 
a+ yr < in. In that case neither of the liquids may fully occupy the edge under 
consideration. If, owing to preceding changes in contact angle, one liquid wetted the 
edge or else was pressed into it by rotation, it will break into drops if the edge exceeds 
the relevant stability length. The resulting drops form spherical sections. Pronounced 
changes in contact angle happen in monotectic metallic melts, where close to the 
critical temperature complete wetting of the crucible by one melt has been predicted 
(Cahn 1977, 1979), whereas close to the monotectic temperature the above situation 
may arise. Another frequent reason for large changes in the contact angle is just 
contamination. If the change in contact angle considered is slow, it is likely that the 
liquid volumes, rather than breaking will be sucked into the container’s corners. 

The surface-tension tank suggested by the above considerations is a globe 
internally equipped with lamellae, the dihedral angles 2a between which narrow 
towards the poles. In regions where a + y > in the fuel will form drops between the 
lamellae, which lose capillary energy when moving towards the poles. A wetting fuel 
will reach regions where a + y < in and then be rapidly sucked to the poles. The drops 
of a non-wetting fluid slowly migrate between the lamellae towards the poles as well. 
However, they do not actually wet the edges themselves, but rather have to be 
sucked off the faces of the lamellae. 

The reported theoretical investigations have been sponsored by the German 
Bundesminister fur Forschung und Technologie (contract number QV 8723) in 
preparation of experimental tests on the behaviour of fluids in different containers 
during the short-time microgravity environment of parabolic flights. 
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